
www.it.ox.ac.uk

www.arc.ox.ac.uk

Effective Use of Clusters



www.it.ox.ac.uk

www.arc.ox.ac.uk

Introduction



3

Before we start…

 Glossary
• core = unit that does the work (sometimes use CPU as a synonym)
• processor = collection of cores in a single package all sharing the same memory
• node = a collection of processors all sharing the same memory
• interconnect = the network in a machine that joins together the separate nodes

Note: each node has its own memory and cannot directly “see” another node’s memory.

 Distinction between processor, process and thread
• processor = a physical piece of hardware
• process = an instance of a running program (software)

o essentially it has two components: instructions to execute and associated data
o in parallel programming we often have multiple instances (processes) of the 

same program…
• a process always consists of one or more threads of execution



4

Models of parallelism: 
Distributed Memory
Distributed Memory Programming Model:

 multi-core system, each core has its own private memory
 local core memory is invisible to all other processors
 agent of parallelism: the process (program = collection of processes)
 exchanging information between processes requires explicit message passing
 the dominant programming standard: MPI

Distributed Memory Hardware:
 conceptually, many PCs connected together (traditional Beowulf cluster)
 current approach:

o multi-core computer nodes (high-density blades) with own memory
o high-bandwidth, low-latency network connection
o off-the shelf modular technology (high-end CPUs, standard hard disk)
o accounts for the largest HPC systems

Distributed Memory ARC systems: the ARC cluster (but any machine can be programmed 
using this model)



5

Models of parallelism: 
Shared Memory
Shared Memory Programming Model:

 multi-core system
 each core has access to a shared memory space
 agent of parallelism: the thread (program = collection of threads)
 threads exchange information implicitly by reading/writing shared variables
 the dominant programming standard: OpenMP

Shared Memory Hardware:
 conceptually, a single PC, with a large memory and many cores
 accounts for both small and inexpensive systems (desktops) and very large and 

expensive system (with very expensive high bandwidth memory access)

Shared Memory ARC Systems: HTC cluster and any single node of the ARC cluster.



6

Distributed Memory v. Shared Memory

 Distributed Memory:
• Can scale to any number of cores
• Requires special tools to compile and run the code

o Typically mpicc or mpif90 to compile, mpirun to run it
• Can be harder to program that shared memory
• But will generally perform better if done well
• And it teaches good parallel programming “habits”

 Shared memory
• Is usually limited to the number of cores in a node

o Can overpopulate, good for debug, bad idea for performance
• Generally just requires an extra flag on the compiler
• Can be easier to program than distributed memory
• It is often hard to get good parallel performance

o Sharing things is not good for parallelism …
• Can easily let people be a bit sloppy when programming …



www.it.ox.ac.uk

www.arc.ox.ac.uk

Batch Scripts



8

Batch Scripts

 Now we know about the types of parallelism we can structure our batch 
script in such a way that we can efficiently use the resources.

 For the clusters provided by ARC we need to know that...
• Each node has typically 48 cores 

 Also remember the first part of the script reserves resources for you, 
while the second says what you want to do with it...



9

Some quick solutions – ARC - MPI

Example for HPC-type job script:
 parallel (MPI) application
 single large problem, too large for single node
 one single input file
 job uses many compute nodes
 For best resource usage use multiple of 48 cores

#!/bin/bash 
#SBATCH --nodes=2 
#SBATCH --ntasks-per-node=48
#SBATCH --mem-per-cpu=2G
#SBATCH –-time=00:10:00
#SBATCH --partition=devel 
#SBATCH –-job-name=myjob
 
module load mpitest/1.0

mpirun mpihello



10

Some quick solutions - HTC

Example for HTC-type job script:
 serial (or multi-threaded) application
 parametric study, many input files
 processing in batches of 48
 each job uses 1 compute node
 ideally, processing should be balanced

#!/bin/bash
…
#SBATCH –walltime=10:00:00
#SBATCH –-nodes=1
…
for ID in {1..48}; do
  serialApp test_$ID.dat &
done
…
wait

Reserve 1 node for 10 hours

Run 48 jobs in the background

Wait for all the jobs to 
complete



11

Array Jobs

 Job arrays allow you to submit the same batch script many times over.

sbatch –array=1-10 myscript.sh

 By default you can distinguish between members of the array with the  
$SLURM_ARRAY_TASK_ID environment variable. For example we could modify the previous 
example to use multiple directories based upon this variable…

job_name.1/test_1.dat .. test_48.dat
..
job_name.10/test_1.dat .. test_48.dat

#!/bin/bash
…
#SBATCH --walltime=10:00:00
#SBATCH --nodes=1
…
cd job_name.$SLURM_ARRAY_TASK_ID
for ID in {1..48}; do
  serialApp test_$ID.dat &
done
…
wait



12

Array Jobs

 The main use is to allow the HTC user to use more than one node
• However there is no reason why an MPI user can’t use them

 And also note there is no performance difference from submitting each 
of the job members individually

 The main reason is convenience
• Can submit all with one command
• Can use scancel to cancel all the jobs with one command

 Strong recommendation: 

Don’t use very large job arrays, if things go wrong things can go VERY 
wrong!
• Do you want emails from each of 10,000 failing jobs all at the same time?



13

Load Balancing and Array Jobs

 When we pack jobs up into groups of 48 the time taken is determined 
by the one that takes the longest

 This can cause efficiency problems if one or two of the jobs take very 
much longer than the others as you will have to wait for the longest to 
complete irrespective of how quick the others are.

 In other words you want the group of 48 to be load balanced
 Not much you can do if you just have 48 jobs
 But if you are using a job array try to make each member of the array 

as balanced as possible 
• You will generally have some kind of feeling which runs are quick to complete and 

which are slow, so group the quick with the quick and the slow with the slow

 So a bit of thought can help your efficiency quite a lot!



14

Hybrid OpenMP/MPI Jobs

Some applications can use MPI for communication between nodes and OpenMP for 
parallelism within the node. This Hybrid type of jobs can be handled as follows:

As an example if we want to use 2 nodes, with 1 MPI task per node and 12 OpenMP 
threads as the resources should be:

#!/bin/bash 

#SBATCH --nodes=2 
#SBATCH –-ntasks-per-node=1
#SBATCH --cpus-per-task=12

module load mpitest

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

mpirun --map-by numa:pe=${SLURM_CPUS_PER_TASK} mpisize

Hello from host "arc-c303". This is MPI task 1, the total MPI Size is 2, and there are 12 CPU 
core(s) allocated to *this* MPI task, these being { 0 1 2 3 4 5 6 7 8 9 10 11 }

Hello from host "arc-c302". This is MPI task 0, the total MPI Size is 2, and there are 12 CPU 
core(s) allocated to *this* MPI task, these being { 0 1 2 3 4 5 6 7 8 9 10 11 }



15

Multi-threaded R or Python Jobs

Both R and Python have relatively easy to use multi-threading libraries available. 

When using an script which uses these it is important to use the correct SLURM 
resource directives. 

As an example if we want to use 48 cores on 1 node, the resources should be:

#!/bin/bash 

#SBATCH --nodes=1 
#SBATCH –-ntasks-per-node=1
#SBATCH --cpus-per-task=48



www.it.ox.ac.uk

www.arc.ox.ac.uk

GPUs



17

GPUs on HTC

 HTC has a wide range of GPU accelerator resources available
 An up-to-date list of GPUs is available here:

https://arc-user-guide.readthedocs.io/en/latest/arc-systems.html#gpu-resources

 GPUs are highly contended resources
– Some are co-investment resources which may be reserved at 

certain times.
– The Nvidia drivers on the compute nodes are updated twice 

per year (May/November). 
● The process requires nodes to be taken offline. 

 

https://arc-user-guide.readthedocs.io/en/latest/arc-systems.html#gpu-resources


www.it.ox.ac.uk

www.arc.ox.ac.uk

Application Containers



19

What is a container?

 A Unix operating system is broken into two primary components, the kernel space, and the user 
space. 

– The kernel talks to the hardware, and provides core system features. 
– The user space is the environment that most people are most familiar with. It is where 

applications, libraries and system services run.

 If you have access to a machine running CentOS (like the ARC clusters) then you cannot install 
software that was packaged for Ubuntu on it, because the user space of these distributions is 
not compatible. 

 Containers change the user space into a swappable component. This means that the entire user 
space portion of a Linux operating system, including programs, custom configurations, and 
environment can be independent of whether your system is running CentOS, Fedora etc., 
underneath.

 Software developers can now build their stack onto whatever operating system base fits their 
needs best, and create distributable runtime environments so that users never have to worry 
about dependencies and requirements, that they might not be able to satisfy on their systems.

From: https://apptainer.org/docs/user/main/introduction.html#why-use-containers



20

Application Containers

 The ARC clusters have Singularity installed – no need to load a 
module.

 Why not Docker?
– Docker users a client-server model which cannot integrate 

with the SLURM batch system.
– It requires superuser privileges to run
– Docker container data is isolated from the host – so no 

access to data or host drivers.
 Singularity is designed specifically for HPC environments

– The container runs as a “child” of the current shell
– Allows access to all host resources including storage, 

Infiniband, GPUs etc..



21

Application Containers – cont...

 Simple to run published containers:

$ singularity run library://sylabsed/examples/lolcow

INFO:    Downloading library image

[========================================================] 100 % 16.1 MiB/s 0s

 ________________________________________

/ It has long been an axiom of mine that \

| the little things are infinitely the   |

| most important.                        |

|                                        |

| -- Sir Arthur Conan Doyle, "A Case of  |

\ Identity"                              /

 ----------------------------------------

        \   ^__^

         \  (oo)\_______

            (__)\       )\/\

                ||----w |

                ||     ||



22

Application Containers – cont...

 Simple to run published Docker containers:

$ singularity run docker://sylabsio/lolcow:latest

INFO:    Converting OCI blobs to SIF format

INFO:    Starting build...

Getting image source signatures

Copying blob 16ec32c2132b done

Copying blob 5ca731fc36c2 done

Copying config fd0daa4d89 done

Writing manifest to image destination

Storing signatures

2021/10/04 14:50:21  info unpack layer: 
sha256:16ec32c2132b43494832a05f2b02f7a822479f8250c173d0ab27b3de78b2f058

2021/10/04 14:50:23  info unpack layer: 
sha256:5ca731fc36c28789c5ddc3216563e8bfca2ab3ea10347e07554ebba1c953242e

INFO:    Creating SIF file...

 _____________________________

< Mon Oct 4 14:50:30 CDT 2021 >

 -----------------------------

        \   ^__^

         \  (oo)\_______

            (__)\       )\/\

                ||----w |

                ||     ||



23

Application Containers – cont...

 Singularity containers are compatible with MPI and Nvidia GPUs
– You need to ensure that the NVidia driver version inside the 

container matches the version on our compute nodes.
– See the following link for the Singularity documentation:

● https://apptainer.org/docs/user/main/
– Note: Singularity is now known as Apptainer
– Containers are unlikely to be as efficient as code built 

natively on the system. This is the cost of convenience. 



www.it.ox.ac.uk

www.arc.ox.ac.uk

Memory Efficiency



25

Identifying & Fixing Memory Issues

 The most common issue: An application runs out of memory.
 There are things you can do…

– Use squeue to identify machines job is running on.
– ssh to one of those machines, and use the Linux top 

command to examine process resources.  
 If memory is the problem. Firstly ensure you are requesting 

enough memory using the #SBATCH –-mem directive.
 You can also waste cores to gain more memory per process.

– Most machines have 48 cores and usable 360GB so this is 
approx. 7.5GB per core. If you use a whole node and 24 
cores you now have 15GB per process.



26

Identifying & Fixing Memory Issues

top - 08:07:09 up 6 days, 21:12,  2 users,  load average: 10.01, 2.79, 1.00

Tasks: 662 total,   5 running, 657 sleeping,   0 stopped,   0 zombie

%Cpu(s):  2.1 us,  0.1 sy,  0.0 ni, 95.8 id,  0.0 wa,  1.9 hi,  0.1 si,  0.0 st

MiB Mem : 386398.6 total, 368922.7 free,  15453.6 used,   2022.2 buff/cache

MiB Swap:   1908.0 total,    938.4 free,    969.6 used. 365768.2 avail Mem

    PID USER      PR  NI    VIRT    RES    SHR S  %CPU  %MEM     TIME+ COMMAND

2056621 ouit0554  20   0 1641888   1.1g  23248 R  98.0   0.3   0:28.68 mpiprimes

2056648 ouit0554  20   0 2880696 180980  23320 R   4.0   0.0   0:13.84 mpiprimes

2056631 ouit0554  20   0 2993992 165092  23292 S   3.6   0.0   0:13.11 mpiprimes

2056634 ouit0554  20   0 2889096 167968  23056 S   3.6   0.0   0:13.25 mpiprimes

2056661 ouit0554  20   0 2998192 163488  23188 S   3.6   0.0   0:14.93 mpiprimes

2056662 ouit0554  20   0 2855516 185188  23164 S   3.6   0.0   0:14.96 mpiprimes

2056665 ouit0554  20   0 2905872 183776  23184 S   3.6   0.0   0:15.14 mpiprimes



27

Identifying & Fixing Memory Issues

MPI Example

 7.5 GB per core

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=48

#SBATCH --mem=0

 15 GB Per core

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=24

#SBATCH –-mem=0

 Other combinations are available...



28

Identifying & Fixing Memory Issues

Threaded Example

 7.5 GB per core

#SBATCH --nodes=1

#SBATCH –-ntasks-per-node=1

#SBATCH --cpus-per-task=48

#SBATCH --mem=0

 15 GB Per core

#SBATCH --nodes=1

#SBATCH –-ntasks-per-node=1

#SBATCH --cpus-per-task=24

#SBATCH –-mem=0



29

Identifying & Fixing Memory Issues

Requesting exclusive access to node resources...

 MPI

#SBATCH --nodes=2

#SBATCH –-ntasks-per-node=24

#SBATCH --exclusive

 Threaded

#SBATCH --nodes=1

#SBATCH –-ntasks-per-node=1

#SBATCH --cpus-per-task=24

#SBATCH –-exclusive



www.it.ox.ac.uk

www.arc.ox.ac.uk

Improving Performance



31

What else can we improve

 There are a number of other ways to generate your results faster 
on a cluster:
• Make the program run faster by either better use of the compiler or 

libraries
• Better use of the disks
• Using an appropriate number of cores for your MPI or OpenMP 

program
• Use of area specific or application specific knowledge

 The first three we’ll discuss in the following sections.
• We will also cover how to measure parallel performance.

 The last is a huge area and mostly beyond what we cover today
• Note especially for MPI programs there are often application specific “tricks” 

that can help you obtain your answer more efficiently on a cluster



www.it.ox.ac.uk

www.arc.ox.ac.uk

Compilers



33

Programming languages

Programming languages for scientific computing:
 Fortran and C account for most computation intensive codes

• computation engines of many applications
• Fortran is more “natural” than C for scientific computing

o use Fortran 95 or later, Fortran 77 is dead!
• performance libraries are written in C (FFTW) or Fortran (LAPACK)

 C++
• OOP allows (it is claimed) better software design and re-use of code

 JAVA, C#, etc.
• normally used only for front-ends and GUIs etc.

 Matlab, Python
• interpreters, interactive use (data inspection, plotting capabilities)
• numerically intensive parts written in C/Fortran (mex functions, modules)



34

Compiled languages

Fortran, C and C++ are compiled
 the computer cannot understand the program (human readable) directly
 the compiler is a tool used to translate the whole program into the instructions 

that a computer can understand
 there are many ways to do this translation; how fast the resulting program runs 

will depend upon how “good” a job the compiler does

Compare with Matlab, Python and R
 interpreted languages
 again, a tool is required to turn the program into something the computer can 

understand, but this is done one “line” at a time
• easy on the tool and convenient in some ways (e.g. what if your program is 

1000s of lines long and you change one line only?)
• but typically much lower performance than compiled program



35

Making most of compilers

So, we want our program to run as fast as possible.

There are two major ways we can affect its performance via the compiler:
 the choice of compiler and
 the use of compiler (i.e. the choice of compiler flags)



36

Compilers

On the ARC systems several compilers are available.

 The GNU compiler collection (standard Linux compilers – available everywhere 

and free) : gcc/g++/gfortran
 The Intel compiler suite : icc/icpc/ifort
 The Portland Group compilers : pgcc/pgCC/pgf90

– The Portland Group compilers are now part of the NVidia HPC toolkit.



37

Choosing the compiler (base)

How to choose which compiler you are using varies from system to system, but on 
the ARC cluster we use environment modules, which are a general method to 
manage software installations. 

For instance on ARC systems the following will pick versions of the appropriate 
compiler:

module load intel-compilers
module load GCC
module load PGI

(Fortran programmers – note these are entirely separate from and have nothing to 
do with Fortran modules)



38

Choosing the compiler (toolchain)

The ARC environment is built using the EasyBuild framework and this 
standardises the naming of certain compiler types and also gathers them 
together with popular libraries such as BLAS/LAPACK and MPI  to form what is 
known as a toolchain.

For example you can load the GCC 11.3.0 compiler alone (not recommended) 
using:

module load GCCcore/11.3.0

..or GCC with compatible binutils and zlib (recommended) with:

module load GCC/11.3.0

Or, if you load the whole toolchain:

module load foss/2022a



39

Choosing the compiler (toolchain)

foss/2022a loads:

1) GCCcore/11.3.0
2) zlib/1.2.12-GCCcore-11.3.0
3) binutils/2.38-GCCcore-11.3.0
4) GCC/11.3.0 
5) numactl/2.0.14-GCCcore-11.3.0
6) XZ/5.2.5-GCCcore-11.3.0
7) libxml2/2.9.13-GCCcore-11.3.0
8) libpciaccess/0.16-GCCcore-11.3.0
9) hwloc/2.7.1-GCCcore-11.3.0
10) OpenSSL/1.1
11) libevent/2.1.12-GCCcore-11.3.0
12) UCX/1.12.1-GCCcore-11.3.0

Key
Black – General modules
Blue – Compiler modules
Red – MPI related modules
Green – Maths library modules

 

13) libfabric/1.15.1-GCCcore-11.3.0
14) PMIx/4.1.2-GCCcore-11.3.0
15) UCC/1.0.0-GCCcore-11.3.0 
16) OpenMPI/4.1.4-GCC-11.3.0
17) OpenBLAS/0.3.20-GCC-11.3.0
18) FlexiBLAS/3.2.0-GCC-11.3.0
19) FFTW/3.3.10-GCC-11.3.0
20) gompi/2022a
21) FFTW.MPI/3.3.10-gompi-2022a
22) ScaLAPACK/2.2.0-gompi-2022a-fb
23) foss/2022a



40

Choosing the compiler (toolchain)

For more information on available toolchains see:

https://docs.easybuild.io/en/latest/Common-toolchains.html#common-toolchains

N.B. Not all toolchains will be available on ARC. Use module spider to 
check.

https://docs.easybuild.io/en/latest/Common-toolchains.html#common-toolchains


41

Compiler Performance

As an example of how the compiler can affect the run time here are two examples of 
DL_POLY_4 run on 16 cores of ARC (one single node) with the three different 
compilers. 

Versions of the compilers are indicated. Times are in seconds.

Compiler Sodium Chloride Gramicidin

gcc 4.8.2 241.686 189.514

Intel 14.0.2 342.201 246.520

Portland Group 13.10-0 205.602 129.827



42

Invoking the compiler

 However it’s not just which compiler you use, it’s also how you invoke it 
--  this usually makes more difference than the choice of compiler

 So let’s have a look at how a compiler works in practice…

 There are actually a number of stages, but only two are of interest to us
• Compilation
• Linking



43

Compilation

 Remember one program can be contained in many source files

 Compilation is the stage that takes an individual file and translates it into 
instructions the computer can understand.

 These instructions are placed in an object file with a .o suffix

 You can compile only (no linking) by use of the –c flag:

$ ls

file.f90

$ gfortran –c file.f90

$ ls

file.f90  file.o



44

Linking

 Remember that a program can be in many different source files
 Linking takes all compiled object files and links them together into a single 

executable
 Linking is normally managed through the compiler tool itself (which uses 

the default linux linker ld to do the work)

$ ls

file1.f90  file2.f90  file3.f90

$ ifort -c file1.f90 

$ ifort -c file2.f90 

$ ifort -c file3.f90 

$ ls

file1.f90  file1.o  file2.f90  file2.o  file3.f90  file3.o

$ ifort file1.o file2.o file3.o -o exe

$ ls

exe  file1.f90  file1.o  file2.f90  file2.o  file3.f90  file3.o



45

Compile and link flags

 We have already used flags to change the (default) behaviour of the compiler 
and linker
• –c specifies “compile only” and –o specifies the executable file

 All compilers have many, many flags

 Similarly, linkers have many flags
• the most important are those telling the linker where to find files (esp. 

libraries)

 The usual flags at the compile stage include
• Help with debugging the program
• Making sure the programmer sticks to international standards
• Telling the compiler where to find files – e.g. –I for include files
• Optimisation flags (these are the most  important flags for us)



46

Optimisation flags

 All compilers have a flag of the form –ON where N is an integer, 
typically in the range 0-3

 Use of this will make the compiler analyse each file it is working on in 
an attempt to produce a faster executable code

 The larger the number, the harder it will try to do so:
• -O0 – don’t optimise the code
• -O1 – do quick and easy optimisations
• -O2 – try hard to get the best performance
• -O3 – try really hard to get the best performance!

 Not quite a free lunch
• Longer compiler times
• More likely to show up compiler bugs
• Also more likely to show up software bugs in strange ways …

 But you should really use the highest of these for productions runs!



47

What difference does it make?

-O0
Compiler Sodium Chloride Gramicidin

gcc 4.8.2 241.686 189.514

Intel 14.0.2 342.201 246.520

Portland Group 13.10-0 205.602 129.827

-O3
Compiler Sodium Chloride Gramicidin

gcc 4.8.2 115.956 84.919

Intel 14.0.2 99.942 76.556

Portland Group 13.10-0 108.292 78.945



48

Other optimisation flags

 All compilers have many optimisation flags
 Unfortunately apart from –O they are almost always specific to the 

compiler
• You will have to look at the man page or the user guide

 Some suggestions (apply to all languages we have considered):

gcc –O3 –funroll-loops –march=native …
icc –O3 –xHost –ipa …
 ipa = inter-procedural analysis, analyses all source code (not just one 

file at a time), looking for optimisation opportunities across files

 –ipa can MASSIVELY increase compile time



49

Optimisation Flags

gcc NaCl

-O0 241.686

-O1 132.374

-O2 120.537

-O3 115.596

-O3 –funroll-loops 119.578

-O3 –funroll-loops 
–march=native

106.882

icc Compile time NaCl

-O0 65 342.201

-O1 142 114.795

-O2 237 99.447

-O3 267 99.942

-O3 -xHost 285 96.769

-O3 –xHost 
-ipa

4202 97.516



www.it.ox.ac.uk

www.arc.ox.ac.uk

Short Break...



www.it.ox.ac.uk

www.arc.ox.ac.uk

Makefiles,MPI 
& The Linker



52

In Practice – the “Makefile”

You don’t always compile the whole program from the command line
 Often something called a Makefile is supplied which will automate the 

build process. This can also be generated by Automake or CMake.
 How to set the compiler  and compiler flags in the case will vary from 

case to case

However …
 Commonly you set a variable called CC to the name of the C compiler
 And one called FC or F90 for the Fortran compiler
 The C compile flags are usually called CFLAGS
 And the Fortran compile flags FFLAGS, FCFLAGS or F90FLAGS



53

Example Makefile

# serial compiler
CC = icc
# compiler flags
CFLAGS  = -O2 -xHost -Wall
# include files
INC     = -I$(MKLROOT)/include
# libraries
LDFLAGS = -L$(MKLROOT)/lib/intel64 -openmp -mkl=parallel -lpthread -lm

# rules
.SUFFIXES:
.SUFFIXES: .c .h .o

.c.o:
$(CC) $(INC) $(CFLAGS) $(COPTS) -c $<

.DEFAULT: blas

blas:blas_demo.o blas_demo_aux.o
$(CC) $(CFLAGS) $(COPTS) -o blas_demo blas_demo.o blas_demo_aux.o $(LDFLAGS)



54

Compiling MPI programs

 Some parallel programs use MPI
• As discussed already

 These should be compiled using the MPI wrapper for the 
compiler
• Usually called mpicc/mpif90

 This takes exactly the same flags as the normal invocation 
of the compiler
• In fact all it really is is the normal invocation with a few extra flags 

added for you!



55

Linker flags

 Similar to the compile stage the linker can also use many flags
 By far the most important of these for us are

• -o which names the executable
• flags to tell the linker where to find “extra” object files

 This last point takes us towards libraries, our next point
 Libraries allow us to use very efficient code that somebody has 

already written
• And so more efficiently use the cluster



www.it.ox.ac.uk

www.arc.ox.ac.uk

Libraries



57

Use the Centrally Installed Libraries!

 When we install software on ARC systems we always try to install 
software using the best performing libraries – the toolchains help 
here.

 This is why you should always use the modules we provide 
• Unless you have a very specific need

 The performance of python, MATLAB, R … really depends on these – 
use the centrally installed software if at all possible and don’t install 
your own.

 Your first option should always be to use the toolchain libraries!



58

Useful Libraries - BLAS and LAPACK

 There are many useful libraries for Scientific computing and I’ll 
mention a few over the next few slides

 Possibly the most important are
• BLAS – Basic Linear Algebra Subprograms
• LAPACK – Linear Algebra Package

 Reference versions are available from www.netlib.org
 However you should not use these
 Rather you should use one of the optimised implementations

• MKL on Intel
• ACML on AMD
• OpenBLAS – Portable, optimised BLAS, continuation of GotoBLAS

 ARC machines mainly use Intel CPUs MKL is provided as part of 
the intel toolchain. OpenBLAS is also available.

http://www.netlib.org/


59

Other useful Scientific Libraries

 FFTW – the de facto method for ffts – www.fftw.org
 Boost – libraries for C++ programmers
 GSL – GNU Scientific Library – www.gnu.org/software/gsl
 ScaLAPACK – distributed memory version of LAPACK 
 NetCDF and HDF5 – libraries to make input/output easier and 

data more portable

http://www.fftw.org/
http://www.gnu.org/software/gsl


60

Parallel libraries

 Some libraries are parallel
• They can use multiple cores to accelerate the computation

 ScaLAPACK is distributed memory
• To use it requires code changes

 But many implementations of BLAS and LAPACK can use shared 
memory parallelism

 So we can use this to make our calculations faster without 
changing the code

 As we saw previously – maths libraries are made available with 
the foss or intel toolchains.



www.it.ox.ac.uk

www.arc.ox.ac.uk

Storage



62

Use of Storage

 Getting the best out of many applications depends on getting the 
best out of using the filesystem where the files your application 
uses are read from or written to

 How to best use the filesystem is cluster specific, but what is best 
for ARC often can be adapted with only small changes for other 
clusters

 There are 2 main issues
1. Amount of I/O – i.e. using lots of disk

2. Efficiency of I/O – i.e. accessing the filesystem as quickly as possible



63

Large Disk Usage

 On ARC systems you have two areas on the disk
 A small “home” area – this is where you log into
 A much larger “data” area
 Thus for your batch jobs we strongly suggest you use the data area
 The data area can be accessed from home via cd $DATA

###############################################################
# Welcome to ARC                                              #
#                                                             #
# Available clusters are:                                     #
#   arc (large parallel jobs)                                 #
#   htc (single-core to single-node jobs                      #
#                                                             #
###############################################################
Last login: Thu Oct 06 10:56:05 2022 from somewhere.arc.ox.ac.uk
$ pwd
/home/ouit0554
$ cd $DATA
$ pwd
/data/myproject/ouit0554

 



64

Faster Disk Usage

 ARC also provides faster $SCRATCH space which is allocated on a per job basis:
– This requires input data to be copied to the $SCRATCH area before running the 

application and the results copied back to $DATA upon completion. 

This must be performed in your submission script.

For detailed information and examples on how to use $SCRATCH see the following page:

https://arc-user-guide.readthedocs.io/en/latest/arc-storage.html

 

https://arc-user-guide.readthedocs.io/en/latest/arc-storage.html


65

Efficient Disk Usage

 The filesystem on ARC systems is something called GPFS. 
 This is a “high performance filesystem”
 However the way it works means that you will get best performance if 

you use a small number of large files accessing them in large chunks
• Actually this is true for most filesystems

 Storing and accessing a very large number of small files will cripple 
your performance on ARC

 We have had cases of users having 100,000+ small (a few kbyte) 
files all in one directory. This will lead to very slow performance

 And what is more as the disks are shared it’s not just slow for you, it’s 
slow for everybody! 



66

A Final Word on storage

 Please note the disks on ARC systems are not there for 
permanent storage

 They are not backed up
 After you have generated your data you should transfer it back to 

your “home machines” via SFTP or similar mechanisms, and then 
delete it from ARC.



www.it.ox.ac.uk

www.arc.ox.ac.uk

Measures of Performance



68

The most important measure

 In this section we will introduce a few measures of performance 
for computer codes, both serial and parallel

 But never forget that what you ultimately want to maximise is the 
amount of science per second that you generate

 This may be as simple as minimising the run time of your program
 But it may involve other factors

• Using a more familiar application
• Getting the best out of your computer budget
• Turnaround on the cluster

o Higher core counts tend to turn around more slowly



69

Parallel measures of performance

 Measuring the performance of parallel codes generally asks 
questions related to how much better are things running on 
multiple cores when compared to running on a single core or node

 We’ll look at
• Speed Up
• Cost



70

Speed Up

 Speed up answers the question “How much faster does my 
program run if I use P cores”

S(P)=T1/T(P)

 So if I use 100 processors it will run 100 times faster, right?
 And it can’t run more than 100 times faster, right?
 Also, I have 100 times as much memory so I can run 100 times 

bigger a problem, right?



71

Absolute Speed Up

 What we should really measure is Absolute Speed Up

S(P)=Ts/T(P)

 Where Ts is the time to run the best implementation of the serial 
program, and T(P) is the time to run the parallel code on P cores
• You may use a different algorithm in the parallel code from the 

serial code



72

Relative Speed Up

 However what is almost always measured is Relative Speed Up

S(P)=T(1)/T(P)

 i.e. we compare the speed against the time taken on 1 core by the 
parallel program

 Saves writing both the serial and parallel code



73

Linear Speed Up

 Linear speed up is simply

S(P)=P

 So if you run on P processors, it runs P times quicker
 This is the ideal situation
 Also called perfect scaling



74

What Does it Look Like

 DL_POLY, 512,000 particles of NaCl on ARC

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Speed Up
Ideal

Cores

Sp
ee

d 
U

p



75

So Why is it Not Perfect!?

 Many Possible Reasons! 
 We’ve touched on load balance
 To go beyond this again is beyond what we are trying to cover 

here
 The main thing is NOT to expect perfect speed up
 And to be aware that using too many cores can actually 

DEGRADE your performance



76

So How Many Cores Should I Use

 Well, firstly don’t put more processes or threads on a node than 
there are cores!!

 It depends …
 It depends on the code you are running

• It may have special parallel options which you should learn about

 It depends on the case you are running
 It depends on the computer you are running on
 More cores will cost you more
 More cores may even slow you calculation down
 More cores will probably mean slower turn around
 It depends upon you and how important cost and turnaround are
 BUT DON’T JUST GUESS!
 One thing you can do is to run a little experiment



77

An Experiment

 Many Scientific codes do the same kind of thing many times
• E.g. timesteps
• E.g. iterations in a solver

 So plot the speed up curve for a few iterations and from that 
decide on a good number of cores for you

 For instance a full DL_POLY run will require at the very least 
many thousands of times steps

 So first run it for 100 timesteps on 1, 2, 4, 8, 16 … cores and see 
what the speed up curve looks like

 And then use that number of cores for the full run



78

Summary

 It’s very difficult to predict the performance of a real application a 
priori

 So you will have to do experiments
 Many applications are iterative
 So measure the performance on a number of different cores for a 

small number of iterations and use that to work out what to use for 
the full run



www.it.ox.ac.uk

www.arc.ox.ac.uk

Any Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

